# KINETIC SOLVENT ISOTOPE EFFECT STUDIES ON THE METHANOLYSIS OF 1-PHENYLETHYL CHLORIDES

# IKCHOON LEE,\* WON HEUI LEE AND HAI WHANG LEE

Department of Chemistry, Inha University, Inchon, 402-751, Korea

The negative slope  $(\Delta \rho_Y^+ < 0)$  of the Hammett-type plot using kinetic solvent isotope effect,  $\log k_{SOH}/k_{SOD}$  versus  $\sigma^+$ , for methanolysis of 1-(Y-phenyl)ethyl chlorides is rationalized by an ion-pair mechanism in which a solvent molecule attacks the relatively stable carbocation formed in the pre-equilibrium.

#### INTRODUCTION

Solvolyses of 1-phenylethyl derivatives have attracted considerable attention in view of the possible involvement of an ion-pair mechanism as an alternative to the normal  $S_N$ 2 mechanism. Most reactions that involve the addition of water and alcohol (SOH) are subject to general base catalysis: <sup>2</sup>

SO--HO--R 
$$\rightleftharpoons$$
  $\begin{bmatrix} SO--H--O--R \\ \downarrow & \downarrow \\ H & S \end{bmatrix}^{\neq}$   
 $\rightleftharpoons$   $SOH_{2}^{+} + ^{-}O-R$   
 $\searrow$  (1)

This type of catalysis has been observed for reactions in which carbocations (R<sup>+</sup>) are formed or react, including the addition of weakly basic alcohols to 1-phenylethyl carbocations of moderate stability.<sup>2,3</sup>

Application of various mechanistic criteria to the nucleophilic substitution reactions of arenesulphonyl halides have led different investigators to propose mainly two types of mechanisms,  $S_N 2^4$  and addition-elimination ( $S_A N$ ). Analysis involving rate-rate profiles of solvent effects in aqueous binary mixtures on the solvolysis of 2,4,6-trimethylbenzenesulphonyl chloride indicated that  $S_N 2$  character is favoured in more polar media whereas a general base-catalysed and/or  $S_A N$  pathway is favoured in less polar media.

Recently, it has been shown that the effect of ring substitution on kinetic solvent isotope effect (KSIE) values,  $k_{\text{SOH}}/k_{\text{SOD}}$ , for the solvolysis of aromatic substrates can be a promising mechanistic tool for identifying different reaction channels.<sup>7</sup> The plots of

log KSIE vs Hammett's  $\sigma$  for the solvolyses of arenesulphonyl chlorides (YC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>Cl) gave straight lines with two distinctly different slopes, 0·15 and 0·05, in methanol and water, respectively, indicating different mechanisms, general base-catalysed and/or S<sub>A</sub>N and S<sub>N</sub>2. The slopes of such plots,  $\Delta \rho_Y$  in the equation

$$\frac{\Delta \log \text{KSIE}}{\Delta \sigma_{\text{Y}}} = \Delta \rho_{\text{Y}} \tag{2}$$

represent the change in  $\rho_Y$  due to the change in nucleophile (also solvent) from SOH to SOD. In this work, this quantity,  $\Delta \rho_Y$ , is used to show the involvement of an ion-pair mechanism in the solvolysis of 1-phenylethyl chlorides [YC<sub>6</sub>H<sub>4</sub>CH(CH)<sub>3</sub>Cl] in methanol.

# RESULTS AND DISCUSSION

It has been shown both theoretically and experimentally that  $D_2O$  is both a weaker base and a stronger acid than  $H_2O$ . In a recent theoretical study of KSIE on the  $S_N2$  reaction of  $CH_3Cl$  with  $Cl^-(H_2O)_n$ , Zhao et al. showed that the water-water and water-chloride hydrogen bonds are stronger in  $D_2O$  rather than in  $H_2O$ . Hence a desolvation process is energetically more difficult in  $D_2O$ , resulting in a rate retardation with KSIE >  $1\cdot 0$ , whereas, in contrast, electrophilic solvent assistance in the leaving group (LG) elimination and deuteron (proton) transfer (KSIE <  $1\cdot 0$ ) are facilitated in  $D_2O$ . This suggests that deuterated water and alcohols (SOD) are less nucleophilic but more ionizing than the corresponding non-deuterated solvents (SOH) in general.

<sup>\*</sup>Author for correspondence.

The magnitude of  $\Delta \rho_{\rm Y}$  can be related to that of  $\rho_{\rm XY}$ , the cross-interaction constant between substituents in the nucleophile  $(\sigma_{\rm X})$  and substrate  $(\sigma_{\rm Y})$ : <sup>10</sup>

$$\log(k_{\rm XY}/k_{\rm HH}) = \rho_{\rm X}\sigma_{\rm X} + \rho_{\rm Y}\sigma_{\rm Y} + \rho_{\rm XY}\sigma_{\rm X}\sigma_{\rm Y} \tag{3}$$

where

$$\rho_{XY} = \frac{\partial^2 \log k_{XY}}{\partial \sigma_X \sigma_Y} = \frac{\partial \rho_Y}{\partial \sigma_X} \left( = \frac{\Delta \rho_Y}{\Delta \sigma_X} \right)$$
 (4)

Since the nucleophilicity of the two solvent nucleophiles, SOH and SOD, differ very little, the hypothetical difference in the substituent  $\sigma_X$  values,  $\Delta\sigma_X = (\sigma_X^H - \sigma_X^D)$  should be small, which in turn means that the magnitude of  $\rho_{XY}$  is large [equation (4)]. The magnitude of  $\rho_{XY}$  is known to be inversely related to the distance between the two reaction centres on the nucleophile (X) and substrate (Y),  $r_{XY}$ ; a greater  $|\rho_{XY}|$  therefore implies a shorter  $r_{XY}$  and hence a greater degree of bond formation. In this work,  $\Delta\sigma_X$  was a constant quantity so that there will be a direct proportionality between  $|\rho_{XY}|$  and  $|\Delta\rho_Y|$  [equation (4)].

The  $\Delta \rho_{\rm Y}$  (=  $\rho_{\rm SOH} - \rho_{\rm SOD}$ ) value in equation (2) is postulated to be a positive quantity [for  $S_{\rm N}2$  and addition-elimination ( $S_{\rm A}N$ ) reactions] or zero<sup>7</sup> (for  $S_{\rm N}1$  reactions). (i) If  $\rho_{\rm Y}$  is positive ( $\rho_{\rm Y}>0$ ), the reaction centre becomes more negative in the transition state (TS) and bond formation is normally ahead of bond cleavage in  $S_{\rm N}2$  reactions. <sup>10</sup> Since SOH is more

nucleophilic than SOD, a greater degree of charge transfer is expected with SOH in the TS so that  $\rho_{\text{SOH}}$  should be greater than  $\rho_{\text{SOD}}$ ,  $\rho_{\text{SOH}} > \rho_{\text{SOD}}$  [this statement is actually true when  $\rho_{\text{XY}} (= \partial \rho_{\text{Y}}/\partial \sigma_{\text{X}}) < 0$ , since a stronger nucleophile  $(\delta \sigma_{\text{X}} < 0)$  should result in a more positive  $\rho_{\text{Y}}$   $(\delta \rho_{\text{Y}} > 0)$  for  $\rho_{\text{XY}} < 0$ ; <sup>10</sup> in most  $S_{\text{N}}$ 2 reactions,  $\rho_{\text{XY}}$  is negative <sup>10</sup>); thus  $\Delta \rho_{\text{Y}} > 0$ . <sup>7</sup> (ii) If  $\rho_{\text{Y}}$  is negative  $(\rho_{\text{Y}} < 0)$ , bond breaking is ahead of bond making in the  $S_{\text{N}}$ 2 TS with positive charge development at the reaction centre. <sup>10</sup> Since bond cleavage is more facilitated in SOD,  $\rho_{\text{SOD}}$  should have a greater negative value,  $|\rho_{\text{SOD}}| > |\rho_{\text{SOH}}|$ , so that  $\Delta \rho_{\text{Y}}$  is again positive.

Examples of these two cases, i.e.  $\rho_Y > 0$  and  $\rho_Y < 0$  with  $\Delta \rho_Y > 0$ , are given in Figure 1 for methanolysis of arenesulphonyl chlorides. <sup>7</sup> Similar plots have also been obtained for the hydrolysis of arenesulphonyl chlorides at 15 °C <sup>11</sup> and 25 °C. <sup>7</sup> The two-point lines in these figures are admittedly of low accuracy, but the trends are found to be identical in all three cases. In  $S_N1$  reactions, the rate is independent of the nucleophile, SOH or SOD, and the KSIE of near unity  $(1 \cdot 1 - 1 \cdot 2)^7$  (the KSIE value itself appears to have little or no clear-cut mechanistic significance, <sup>3a</sup> but the slope,  $\Delta \rho$ , for the plot of log KSIE vs  $\sigma$  can be used as a mechanistic tool) varies very little with substituents, indicating that  $\Delta \rho_Y$  is approximately zero, <sup>7</sup> and hence  $\rho_{XY} = 0$ . <sup>10</sup>

The rate and KSIE for methanolysis of 1-phenylethyl chlorides are summarized in Table 1, and the plot of

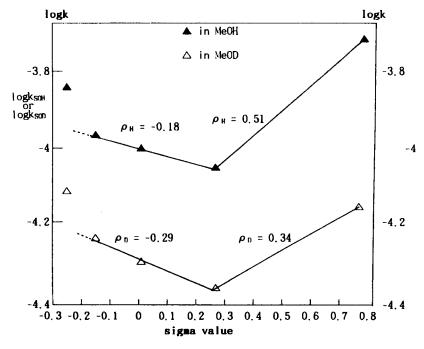



Figure 1. Hammett plot for solvolysis of para-substituted sulphonyl chlorides in (A) MeOH and (A) MeOD

Table 1. First-order rate constants  $(k_1 \times 10^5 \text{ s}^{-1})$  for the solvolyses of 1-phenylethyl chlorides in methanol and deuterated methanol at  $65 \cdot 0^{\circ}$ C

| Y                                                                                                 | МеОН                                                                                            | MeOD                                                                                                                                                                                                                                     | $k_{\rm H}/K_{ m D}$                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p-CH <sub>3</sub><br>p-C(CH <sub>3</sub> ) <sub>3</sub><br>m-CH <sub>3</sub><br>H<br>p-Cl<br>m-Cl | 892·5 ± 2·1°<br>624·6 ± 3·1<br>54·55 ± 0·14<br>22·95 ± 0·07<br>8·285 ± 0·043<br>0·8609 ± 0·0078 | $738 \cdot_2 \pm 0 \cdot_1  525 \cdot_1 \pm 1 \cdot_9  47 \cdot_{94} \pm 0 \cdot_{17}  22 \cdot_{07} \pm 0 \cdot_{22}  9 \cdot_{067} \pm 0 \cdot_{003}  1 \cdot_{619} \pm 0 \cdot_{031}  5 \cdot_{100} + 0 \cdot_{100} + 0 \cdot_{100} $ | $   \begin{array}{c}     1 \cdot 20_9 \pm 0 \cdot 00_3^{\ b} \\     1 \cdot 19_0 \pm 0 \cdot 00_7 \\     1 \cdot 13_8 \pm 0 \cdot 00_5 \\     1 \cdot 04_0 \pm 0 \cdot 01_1 \\     0 \cdot 91_4 \pm 0 \cdot 00_5 \\     0 \cdot 53_2 \pm 0 \cdot 01_1   \end{array} $ |

<sup>&</sup>lt;sup>a</sup> Standard deviation from more than three determinations.

log KSIE versus  $\sigma^+$  is presented in Figure 2. The KSIE value is seen to decrease from  $1 \cdot 21$  (Y = p-CH<sub>3</sub>) to  $0 \cdot 53$  (Y = m-Cl), whereas the slopes of the two straight lines in Figure 2 are both negative,  $\Delta \rho_Y^+ < 0$ . The negative  $\Delta \rho_Y^+$  value is obviously inconsistent with any of the  $S_N$  mechanisms discussed above; since both  $\rho_Y^+$  and  $\Delta \rho_Y^+$  are negative, we expect a greater negative  $\rho_Y^+$  value in SOH, i.e.  $|\rho_{SOD}| < |\rho_{SOH}^+|$ , which is opposite to the trends found in normal  $S_N$  reactions. This negative

 $\Delta \rho_Y^+$  value can only be rationalized by postulating an ion-pair mechanism:

$$RCl \xrightarrow{k_1} R^+Cl^- \xrightarrow{k_c[SOH]} \text{ products}$$
 (5)

in which a solvent molecule attacks the carbocation,  $R^+$ , formed in a pre-equilibrium. <sup>12,13</sup> A highly suggestive feature for this mechanism is the common ion (Cl<sup>-</sup>) rate depression observed with the *p-tert*-butyl derivative  $(6 \cdot 47 \pm 0 \cdot 09, 6 \cdot 67 \text{ and } 6 \cdot 84 \pm 0 \cdot 13 \times 10^{-3} \text{ s}^{-1}$  with  $0 \cdot 01, 0 \cdot 03$  and  $0 \cdot 04 \text{ M}$  KCl added, respectively, compared with  $6 \cdot 84 \pm 0 \cdot 01 \times 10^{-3} \text{ s}^{-1}$  with no KCl)<sup>14</sup> in the methanolysis at  $65 \cdot 0^{\circ}$ C. This mass law effect was absent, however, with the unsubstituted compound, for which a normal salt (ionic strength) effect with  $b = 14 \cdot 5$  in  $k'_s = k_s (1 + b[\text{salt}])$  was observed. <sup>14</sup> These findings are similar to those for benzhydryl and 1-adamantyl dimethylsulphonium ion solvolysis; the mass law effect was absent in the latter whereas it was observed in the former. <sup>15</sup>

The fact that SOH is a stronger nucleophile <sup>8,9</sup> is tantamount to the relationship  $\sigma_X^H < \sigma X^D$ , since a more electron-donating substituent (EDS) with a more negative  $\sigma_X$  leads to a stronger nucleophile. This means that

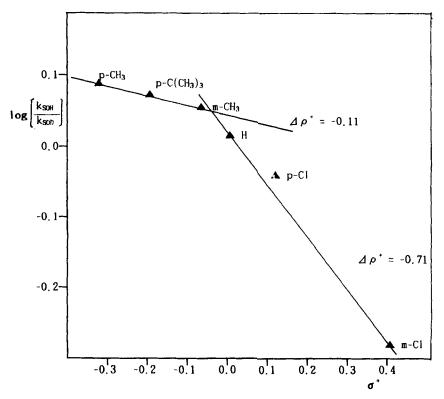



Figure 2. Hammett-type plot using kinetic solvent isotope effects, log KSIE vs  $\sigma^+$ , for solvolysis of 1-phenylethyl chlorides in MeOH and MeOD

<sup>&</sup>lt;sup>b</sup>Standard error  $(=1/k_D[(\Delta k_H)^2 + (k_H/k_D)^2 \times (\Delta k_D)^2]^{1/2}$ .

 $\rho_{\rm XY}$  values [equation (4)] for  $S_{\rm N}2$  and  $S_{\rm A}N$  reactions are negative, since  $\Delta\rho_{\rm Y}$  is positive and  $\Delta\sigma_{\rm X}$  (=  $\sigma_{\rm X}^{\rm H} - \sigma_{\rm X}^{\rm D}$ ) is negative:

$$\rho_{XY} = \frac{\Delta \rho_Y}{\Delta \sigma_X} = \frac{(+)}{(-)} < 0$$

For most of  $S_N$  reactions, the observed  $\rho_{XY}$  values were actually negative <sup>10</sup> (see earlier comment). If the sign of  $\Delta \rho_Y$  is negative, as in this work,  $\rho_{XY}$  reverses to positive:

$$\rho_{XY} = \frac{\Delta \rho_Y}{\Delta \sigma_X} = \frac{(-)}{(-)} > 0$$

In relatively rare examples of positive  $\rho_{XY}$ , the TS was tight (with relatively large negative charge development at the reaction centre <sup>10</sup>), which is similar to the TS structure proposed in the nucleophilic substitution reactions of 1-phenylethyl chlorides in MeOH. <sup>14</sup> It is difficult, however, to compare the present results with these examples since  $\rho_{XY}$  may be a complex quantity, as discussed below for  $\rho_{Y}^{+}$ .

The ion-pair mechanism [equation (5)] has also been proposed for the solvolyses of 1-arylethyl tosylates with the m-Br and derivatives with more electron-withdrawing substituents in aqueous ethanol mixtures and in other highly ionizing (100 HFIP) and weakly nucleophilic (HOAc) solvents.  $^{1a}$ 

For this mechanism, the observed solvolysis rate constant,  $k_s$ , and the Hammett's  $\rho_Y^+$  value are given as complex quantities;

Rate = 
$$k_c$$
 [SOH] [R<sup>+</sup>Cl<sup>-</sup>]  
=  $k_c K'$  [RCl] [SOH]  
=  $k_c K$  [RCl] (6)

where

$$K = K'[SOH] = k_1/k_{-1}[SOH]$$

Therefore,

$$k_{\rm s} = k_{\rm c} K \tag{7}$$

$$\rho_{Y}^{+} = \rho_{c}^{+} + \rho_{eq}^{+}$$
 (8)

where  $\rho_c^+$  is the susceptibility of charge development at  $C_\alpha$  to the change in substituent Y as the  $C_\alpha$ —O bond is formed, and  $\rho_{eq}^+$  is for the pre-equilibrium ion-pair formation;  $\rho_{eq}^+$  is known to be very large negative (-10 to -12)<sup>1b</sup> and  $\rho_c^+$  is expected to be positive since transfer of negative charge from the nucleophile (SOH) to  $C_\alpha$  will reduce the positive charge on the carbocation,  $R^+$  ( $\rho_c^+ > 0$  and  $\rho_{eq}^+ < 0$ ). Since SOH is more nudeophilic than SOD,  $k_c$  will be greater in SOH, which will lead to a greater  $k_s$  in SOH than in SOD of K varies little in the two solvents. This is indeed the case for electron-donating substitution (Y = EDS) in Table 1. In contrast, however, the ion pair with localized positive charge on  $C_\alpha$  for electron-withdrawing substituents

(Y = EWS) will be relatively more stabilized in SOD owing to the stronger hydrogen bonding ability to anions than in SOH, leading to a greater K, and hence a greater  $k_s$  is observed in SOD (Table 1). Considering the entire series of substrates, the ion-pair equilibrium seems to be relatively more sensitive in SOH than in SOD, i.e.  $|\rho_{\rm eq(SOH)}^+| > |\rho_{\rm eq(SOD)}^+|$ , which leads to  $|\rho_{\rm Y(SOH)}^+| > |\rho_{\rm Y(SOH)}^+|$  despite the larger positive  $\rho_c^+$  in SOH due to the greater nucleophilicity of SOH. The two values observed are  $\rho_{\rm Y(SOH)}^+ = -4.38$  (r = 0.992, standard deviation s = 0.24, n = 6) and  $\rho_{\rm Y(SOD)}^+ = -3.89$  (r = 0.983, s = 0.24, n = 6). These  $\rho_{\rm Y}^+$  values are comparable to those reported in various solvents, ranging from -6.3 (100% 2,2,2-trifluoroethanol (TFE)) to -3.0 (80% EtOH).

The KSIE originating from  $k_c$  will be relatively large<sup>7</sup>  $[k_{c(SOH)}/k_{c(SOD)} \ge 2.0]$  owing to general base catalysis in the addition of CH<sub>3</sub>OH to the relatively stable cation, which is reflected in the normal KSIE observed for Y = EDS (Table 1). This effect, however, will diminish as the electron-donating power of Y decreases, since a lesser degree of base catalysis is required for the less stable cation. 3b Moreover, a relatively greater stabilization of localized positive charge on  $C_{\alpha}$  with Y = EWS in SOD should lead to an inverse equilibrium solvent isotope effect,  $K_{(SOH)}/K_{(SOD)} < 1.0$ . As a result, Y = EWS, inverse KSIEs are observed,  $k_{s(SOH)}/K_{s(SOD)} < 1.0$ , which is in agreement with the results of Richard and Jencks<sup>2</sup> that the selectivity (in this case KSIE) of carbocations toward alcohols decreases as the carbocation becomes less stable.

Further, the localized cationic species for Y = EWS will be more sensitive to solvent ionizing power so that the difference in  $\rho_Y^+$ , i.e.  $|\Delta\rho_Y^+|$ , should prove to be greater with Y = EWS. Indeed the two linear parts in Figure 2 have slopes  $\Delta\rho_Y = -0.11$  (r = 0.998, s = 0.01, n = 3) and -0.71 (r = 0.995, s = 0.13, n = 4) for electron-donating substituents and relatively more electron-withdrawing substituents, respectively.

Now let us elaborate on why there is a break with two distinct straight linear parts in the plots of log KSIE vs  $\sigma_{Y}^{+}$  in Figure 2. Depending on the electron-donating ability of the substituent (Y) two extreme forms of cation, I and II, are conceivable. <sup>14</sup> In I, a relatively strong electron donor, Y, nearly completely delocalizes positive charge, which is stabilized by specific solvation

to the positively charged Y group, whereas in II an electron acceptor, Y, gives a localized positive charge on  $C_{\alpha}$ with virtually no positive charge delocalization. Since the  $C_{\alpha}$  atom in I has very little positive charge, the attacking solvent molecule, SOaH (S = CH3), requires a second molecule, SObH, as a general base catalyst which deprotonates partially the SO<sup>a</sup>H in the TS; this will result in a decrease in the force constants of the H-O<sup>a</sup> vibrational modes, leading to a primary kinetic isotope effect (KIE),  $k_{\rm H}/k_{\rm D} > 1.0.9$  This is, however, partially countered and cancelled by the concerted process of H-O<sup>b</sup> bond making, leading to an inverse secondary KIE,  $k_{\rm H}/k_{\rm D} < 1.0$ . Reorganization of the delocalized structure, however, lags behind the rapid proton transfer so that the TS becomes imbalanced. 14 This means that susceptibility of  $C_{\alpha}$  to the change in the electron-donating ability of Y is relatively weak so that only a small decrease in the KSIE, i.e. small negative  $\Delta \rho_{\rm Y}^+$ , is observed with an increase in  $\sigma_{\rm Y}^+$ . In contrast, in II, the relatively strong localized positive charge at C<sub>α</sub> does not require any base catalysis by a second solvent molecule; in this case only desolvation of the hydrogen-bonded second solvent molecule (SObH) takes place. Both  $C_{\alpha}$ -O bond-making and H-O<sup>b</sup> hydrogen bond-breaking processes, however, lead to an increase in the force constants of Oa-H vibrational modes, resulting in the inverse secondary KIE observed,  $k_{\rm H}/k_{\rm D} < 1.0$ . This effect will be enhanced as the positive charge at the Ca atom grows with the increase in  $\sigma_{\rm Y}^{+}$ . Since there is no counteracting effect and polar effect of  $\sigma_{Y}^{+}$  is transmitted directly to  $C_{\alpha}$  without any TS imbalance, and also bond making has progressed to a substantial degree, a steep decrease in the KSIE with  $\sigma_Y^+$  will occur and a large negative  $\Delta \rho_Y^+$  is obtained. These interpretations are also consistent with the mechanism of aminolysis of 1-phenylethyl chlorides in methanol. 14

In conclusion, the ion-pair mechanism is characterized by a negative  $\Delta \rho_Y^+$  [equation (2)] in contrast to positive  $\Delta \rho_Y$  values for normal nucleophilic substitution reactions.

## **EXPERIMENTAL**

Materials. Merck analytical-reagent grade methanol and deuterated methanol were used without further purification. In the preparation of substituted 1-phenylethyl chloride, <sup>1c,16</sup> the corresponding acetophenone was reacted with reducing agent (LiAlH<sub>4</sub>) to produce 1-phenylethyl alcohol, which was then converted into 1-phenylethyl chloride by reaction with thionyl chloride in dry chloroform at room temperature. The products were vacuum distilled and separated by column chromatography.

Kinetic products. Reaction rates were measured con-

ductimetrically at  $65 \cdot 0 \pm 0 \cdot 05$  °C in methanol and deuterated methanol. The conductivity bridge used in this work was a laboratory-made computer interface automatic A/D converter conductivity bridge and the conductivity cell was placed in a Pyrex pressure bottle with a tightly sealed cap to prevent leak of methanol vapour. Substrates were injected with a syringe. The vapour pressure inside the bottle is expected to rise with a corresponding rise in the boiling point. The rise in the external pressure (maximum ca 2 atm), however, is not significant enough to affect the observed rates. Pseudofirst-order rate constants,  $k_1^{\text{obs}}$ , were determined by the Guggenheim method. <sup>17</sup> No UV peak ( $\lambda_{\text{max}} \approx 282$ , 244 nm) corresponding to any alkene formed by an elimination reaction was detected.

#### **ACKNOWLEDGEMENTS**

We thank the Ministry of Education and the Korea Science and Engineering Foundation for support of this work.

### REFERENCES

- (a) A. D. Alder, V. M. Kanagasabafathy and T. T. Tidwell, J. Am. Chem. Soc. 107, 4513 (1985); (b) 108, 3470 (1986); (c) J. P. Richard, M. E. Rothenberg and W. P. Jencks, J. Am. Chem. Soc. 106, 1361 (1984); (d) J. P. Richard and W. P. Jencks, J. Am. Chem. Soc. 106, 1373, 1383 (1984).
- J. P. Richard and W. P. Jencks, J. Am. Chem. Soc. 106, 1396 (1984).
- (a) C. D. Ritchie, D. J. Wright, D.-S. Huang and A. A. Kamego, J. Am. Chem. Soc. 97, 1163 (1975); (b) R. Ta-Shma and W. P. Jencks, J. Am. Chem. Soc. 108, 8040 (1986).
- (a) M. L. Tonnet and A. N. Hambly, Aust. J. Chem. 24, 703 (1971); (b) R. Foon and A. N. Hambly, Aust. J. Chem. 24, 713 (1971); (c) I. Lee and I. S. Koo, J. Korean Chem. Soc. 25, 7 (1981); (d) I. Lee and I. S. Koo, Bull Korean Chem. Soc. 2, 41 (1981); Tetrahedron, 39, 1803 (1983); (e) O. Rogne, J. Chem. Soc. B 1294 (1968); 727 (1970); 1855 (1971); J. Chem. Soc., Perkin Trans 2 472 (1972).
- (a) L. M. Litvinenko, A. F. Popov and V. A. Savelova, Ukr. Khim Zh. 33, 57 (1967); (b) L. M. Litvinenko, N. T. Maleeva, V. A. Savelova and T. D. Kovach, Zh. Obshch. Khim. 41, 2615 (1971); (c) E. Criffarin, L. Senatore and M. Isola, J. Chem. Soc., Perkin Trans. 2 468 (1972); (d) L. J. Stangeland, L. Senatore and E. Ciuffarin, J. Chem. Soc., Perkin Trans. 2 852 (1972); (e) A. Arcoria, E. Maccarone, G. Musumarra and G. A. Tomaselli, J. Chem. Soc., Perkin Trans. 2 221 (1981); (f) A. Arcoria, V. Librando, E. Macarone, G. Musumarra and G. A. Tomaselli, Tetrahedron 33, 105 (1977).
- (a) I. S. Koo, T. W. Bentley, G. Llevellyn and K. Yang, J. Chem. Soc., Perkin Trans. 2 1175 (1991); (b) I. S. Koo, T. W. Bentley, D. H. Kang and I. Lee, J. Chem. Soc., Perkin Trans. 2 175 (1991).
- I. S. Koo, I. Lee, J. Oh, K. Yang and T. W. Bentley, J. Phys. Org. Chem. 6, 223-227 (1993).

- E. M. Arnett and D. K. McKelvey, in Solute-Solvent Interaction, edited by J. F. Coetzee and C. D. Ritchie, p. 353. Marcel Dekker, New York (1969).
- X. G. Zhao, S. C. Tucker and D. G. Truhlar, J. Am. Chem. Soc. 113, 826 (1991).
- (a) I. Lee, Chem. Soc. Rev. 19, 317 (1991); (b) I. Lee, Adv. Phys. Org. Chem. 27, 57 (1992).
- B. Rossall and R. E. Robertson, Can. J. Chem. 49, 1451 (1971).
- D. N. Kevill and N. H. J. Ismail, J. Chem. Res. (S) 130 (1991).
- 13. V. J. Shiner, Jr, W. E. Buddenbaum, B. L. Allen, M. P.

- Jansen, K. M. Koshy, N. N. Mangru and T. T. Tidwell, J. Am. Chem. Soc. 104, 207 (1982).
- I. Lee, W. H. Lee and H. W. Lee and T. W. Bentley, J. Chem. Soc., Perkin Trans 2, 141 (1993).
- D. N. Kevill, S. W. Anderson and E. K. Flujimoto, in Nucleophilicity, edited by J. M. Harris and S. P. McManus, Chapt. 19. American Chemical Society, Washington, DC (1987).
- R. A. Sneen and H. M. Robbins, J. Am. Chem. Soc. 94, 7868 (1972).
- 17. E. A. Guggenheim, Philos. Mag. 2, 538 (1926).